Stats 116 Linear Algebra Section

John Duchi

May 6, 2022

Question S.1: Recall that vectors $x_{1}, \ldots, x_{m} \in \mathbb{R}^{n}$ are linearly dependent if for some $i \in\{1, \ldots, m\}$, there exist scalars $\beta_{1}, \ldots, \beta_{m} \in \mathbb{R}$ such that

$$
x_{i}=\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{i-1} x_{i-1}+\beta_{i+1} x_{i+1}+\cdots+\beta_{m} x_{m} .
$$

The collection $\left\{x_{1}, \ldots, x_{m}\right\}$ is linearly independent if there is no such index i and collection of scalars β_{j}. Recall also that the span of a set of vectors is the set of linear combinations of the vectors,

$$
\operatorname{span}\left(x_{1}, \ldots, x_{m}\right):=\left\{\sum_{j=1}^{m} \alpha_{j} x_{j} \mid \alpha_{j} \in \mathbb{R}\right\} .
$$

(a) Show that x_{1}, \ldots, x_{m} are linearly dependent if and only if there exist $\alpha_{1}, \ldots, \alpha_{m}$, not all equal to zero, such that

$$
\sum_{i=1}^{m} \alpha_{i} x_{i}=0
$$

(b) Suppose that the vectors $a_{1}, \ldots, a_{n} \in \mathbb{R}^{n}$ are linearly independent and that for two nonzero vectors $x, y \in \mathbb{R}^{n}$, we have

$$
\sum_{i=1}^{n} a_{i} x_{i}=\sum_{i=1}^{n} a_{i} y_{i} .
$$

Show that $x=y$.
(c) Show that $\left\{x_{1}, \ldots, x_{m}\right\} \in \mathbb{R}^{n}$ are linearly independent if and only if

$$
x_{i} \notin \operatorname{span}\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{m}\right)
$$

for each i.

Question S.2: A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear if for any two vectors $x, y \in \mathbb{R}^{n}$, we have $f(x+y)=f(x)+f(y)$, and for any scalar $\alpha \in \mathbb{R}$ we have $f(\alpha x)=\alpha f(x)$. Let f be a linear function.
(a) Argue that for each standard basis vector

$$
e_{i}=[\underbrace{\underbrace{0}_{n-i} \cdots 0}_{i-1 \text { times }} 1 \underbrace{0 \cdots 0}_{n-1 \text { times }}]^{\top},
$$

there is a vector $a_{i} \in \mathbb{R}^{m}$ such that $a_{i}=f\left(e_{i}\right)$.
(b) Argue that if $x \in \mathbb{R}^{n}$ with coordinates $x=\left[x_{j}\right]_{j=1}^{n}$, then

$$
f(x)=\sum_{j=1}^{m} a_{j} x_{j} .
$$

(c) Show that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear function if and only if there exists a matrix $A \in \mathbb{R}^{m \times n}$ such that $f(x)=A x$. What are the columns of A ?

Question S.3: Consider solving the linear equation

$$
A x=b
$$

where $A \in \mathbb{R}^{n \times n}$ is full rank (i.e., its n columns are linearly independent), and $x, b \in \mathbb{R}^{n}$. Thus, we wish to solve n equations in the n unknowns in x. Define the solution mapping $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by $S(b)$ is the solution to $A x=b$.
(a) Show that (assuming $S(b)$ exists) it is unique.
(b) Show that the mapping S is linear, that is, $S(b)$ is linear in b.
(c) Conclude that there must be a matrix $B \in \mathbb{R}^{n \times n}$ such that $B A=I$, the $n \times n$ identity, where the i th column of B is $S\left(e_{i}\right)$. This matrix is the inverse A^{-1} of A.

Question S.4: A collection of vectors $\left\{u_{1}, \ldots, u_{m}\right\} \subset \mathbb{R}^{n}$ is orthogonal if

$$
u_{i} \cdot u_{j}=u_{i}^{\top} u_{j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { otherwise }\end{cases}
$$

Let $x \in \mathbb{R}^{n}$. Show that the projection of x onto $\operatorname{span}\left(u_{1}, \ldots, u_{m}\right)$, that is, the point $\pi(x) \in$ $\operatorname{span}\left(u_{1}, \ldots, u_{m}\right)$ closest to x, is

$$
\pi(x)=\sum_{i=1}^{m} u_{i} u_{i}^{\top} x .
$$

Draw a picture.

