Stats 116 Linear Algebra Section

John Duchi

May 6, 2022

Question S.1: Recall that vectors $x_1, \ldots, x_m \in \mathbb{R}^n$ are *linearly dependent* if for some $i \in \{1, \ldots, m\}$, there exist scalars $\beta_1, \ldots, \beta_m \in \mathbb{R}$ such that

$$x_{i} = \beta_{1}x_{1} + \beta_{2}x_{2} + \dots + \beta_{i-1}x_{i-1} + \beta_{i+1}x_{i+1} + \dots + \beta_{m}x_{m}.$$

The collection $\{x_1, \ldots, x_m\}$ is *linearly independent* if there is no such index *i* and collection of scalars β_j . Recall also that the *span* of a set of vectors is the set of linear combinations of the vectors,

$$\operatorname{span}(x_1,\ldots,x_m) := \left\{ \sum_{j=1}^m \alpha_j x_j \mid \alpha_j \in \mathbb{R} \right\}.$$

(a) Show that x_1, \ldots, x_m are linearly dependent if and only if there exist $\alpha_1, \ldots, \alpha_m$, not all equal to zero, such that

$$\sum_{i=1}^{m} \alpha_i x_i = 0.$$

(b) Suppose that the vectors $a_1, \ldots, a_n \in \mathbb{R}^n$ are linearly independent and that for two nonzero vectors $x, y \in \mathbb{R}^n$, we have

$$\sum_{i=1}^{n} a_i x_i = \sum_{i=1}^{n} a_i y_i.$$

Show that x = y.

(c) Show that $\{x_1, \ldots, x_m\} \in \mathbb{R}^n$ are linearly independent if and only if

$$x_i \notin \operatorname{span}(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_m)$$

for each i.

Question S.2: A function $f : \mathbb{R}^n \to \mathbb{R}^m$ is *linear* if for any two vectors $x, y \in \mathbb{R}^n$, we have f(x+y) = f(x) + f(y), and for any scalar $\alpha \in \mathbb{R}$ we have $f(\alpha x) = \alpha f(x)$. Let f be a linear function.

(a) Argue that for each standard basis vector

$$e_i = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ i-1 & \text{times} \end{bmatrix}^{\top},$$

there is a vector $a_i \in \mathbb{R}^m$ such that $a_i = f(e_i)$.

(b) Argue that if $x \in \mathbb{R}^n$ with coordinates $x = [x_j]_{j=1}^n$, then

$$f(x) = \sum_{j=1}^{m} a_j x_j.$$

(c) Show that $f : \mathbb{R}^n \to \mathbb{R}^m$ is a linear function if and only if there exists a matrix $A \in \mathbb{R}^{m \times n}$ such that f(x) = Ax. What are the columns of A?

Question S.3: Consider solving the linear equation

$$Ax = b$$

where $A \in \mathbb{R}^{n \times n}$ is full rank (i.e., its *n* columns are linearly independent), and $x, b \in \mathbb{R}^n$. Thus, we wish to solve *n* equations in the *n* unknowns in *x*. Define the solution mapping $S : \mathbb{R}^n \to \mathbb{R}^n$ by S(b) is the solution to Ax = b.

- (a) Show that (assuming S(b) exists) it is unique.
- (b) Show that the mapping S is linear, that is, S(b) is linear in b.
- (c) Conclude that there must be a matrix $B \in \mathbb{R}^{n \times n}$ such that BA = I, the $n \times n$ identity, where the *i*th column of B is $S(e_i)$. This matrix is the inverse A^{-1} of A.

Question S.4: A collection of vectors $\{u_1, \ldots, u_m\} \subset \mathbb{R}^n$ is orthogonal if

$$u_i \cdot u_j = u_i^\top u_j = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise.} \end{cases}$$

Let $x \in \mathbb{R}^n$. Show that the projection of x onto $\operatorname{span}(u_1, \ldots, u_m)$, that is, the point $\pi(x) \in \operatorname{span}(u_1, \ldots, u_m)$ closest to x, is

$$\pi(x) = \sum_{i=1}^{m} u_i u_i^{\top} x.$$

Draw a picture.